
58 The Delphi Magazine Issue 46

COM Corner: Microsoft
Transaction Server, Part 2
by Steve Teixeira

This month I will continue the
discussion on Microsoft

Transaction Server (MTS). Last
month I discussed the new features
and services that MTS brings to the
table for COM developers, such as
lifetime management, transaction
support, security, and scalability.

With all of that under your belt,
this article will focus on Delphi 4’s
support of MTS and how to build
MTS solutions in Delphi. Before we
jump right in, however, you should
first know that MTS support is built
only into the Client/Server version
of Delphi. While it’s technically
possible to create MTS compo-
nents using the facilities available
in the Standard and Professional
versions, I wouldn’t consider it the
most productive use of your time.

MTS Wizards
Delphi provides two wizards for
building MTS components, both
found on the Multitier tab of the
New Items dialog: the MTS Remote
Data Module Wizard and the MTS
Object Wizard. The MTS Remote
Data Module Wizard enables you
to build MIDAS servers that oper-
ate in the MTS environment. The
MTS Object Wizard will serve as
the starting point for your MTS
objects, and it is this wizard upon
which I will focus my discussion.

Upon invoking this wizard,
you will be presented with the
dialog shown in Figure 1.

This dialog is similar to the
Automation Object Wizard
with which you are probably
familiar. The obvious differ-
ence is the facility provided by
this wizard to select the trans-
action model supported by
your MTS component. The
available transaction models
are as follows.

Requires a transaction: The
component will always be created
within the context of a transaction.
It will inherit the transaction of its
creator if one exists, or it will other-
wise create a new one.

Requires a new transaction: A
new transaction will always be cre-
ated for the component to execute
within.

Supports transactions: The com-
ponent will inherit the transaction
of its creator if one exists, or it will
execute without a transaction
otherwise.

Does not support transactions:
The component will never be cre-
ated within a transaction.

The transaction model informa-
tion is stored along with the com-
ponent’s coclass in the type
library.

After you click OK to dismiss the
dialog, the wizard will generate an
empty definition for a class that

descends from TMtsAutoObject and
it will leave you in the Type Library
Editor to define your MTS compo-
nents by adding properties, meth-
ods, interfaces, and so on. This
should be familiar territory, as the
workflow is identical at this point
to developing automation objects
in Delphi.

It’s interesting to note at this
point that, while the Delphi wizard-
created MTS objects are automa-
tion objects (that is, COM objects
that implement IDispatch), MTS
doesn’t technically require this.
However, since COM inherently
knows how to marshal IDispatch
interfaces accompanied by type
libraries, employing this type of
object in MTS enables you to con-
centrate more on your compo-
nents’ functionality and less on
how they integrate with MTS. You
should also be aware that MTS
components must reside in
in-process COM servers (.DLLs);
MTS components are not sup-
ported in out-of-process servers
(.EXEs).

MTS Framework
The aforementioned TMtsAuto-
Object class, which is the base
class for all Delphi wizard-created
MTS objects, is defined in the

type
TMtsAutoObject = class(TAutoObject, IObjectControl)
private
FObjectContext: IObjectContext;

protected
{ IObjectControl }
procedure Activate; safecall;
procedure Deactivate; stdcall;
function CanBePooled: Bool; stdcall;
procedure OnActivate; virtual;
procedure OnDeactivate; virtual;
property ObjectContext: IObjectContext read FObjectContext;

public
procedure SetComplete;
procedure SetAbort;
procedure EnableCommit;
procedure DisableCommit;
function IsInTransaction: Bool;
function IsSecurityEnabled: Bool;
function IsCallerInRole(const Role: WideString): Bool;

end;

➤ Listing 1

➤ Figure 1: MTS Automation
Object Wizard.

June 1999 The Delphi Magazine 59

MtsObj unit. TMtsAutoObject is a rel-
atively straightforward class that
is defined as shown in Listing 1.

TMtsAutoObject is essentially a
TAutoObject that adds two impor-
tant bits of functionality.

First, it implements the
IObjectControl interface, which
manages the initialization and
cleanup of MTS components. The
methods of this interface are
shown in Table 1. TMtsAutoObject
provides virtual OnActivate and
OnDeactivate methods, which are
fired from the private Activate and
Deactivate methods. Simply over-
ride these to create special con-
text-specific activation or
deactivation logic.

Second, TMtsAutoObject also
maintains a pointer to MTS’s
IObjectContext interface in the
form of the ObjectContext prop-
erty. You’ll recall from last month’s
article that IObjectContext is the
interface provided by MTS that
provides a component the ability
to manipulate its current context.
As a shortcut for users of this class,
TMtsAutoObject also surfaces each
of IObjectContext’s methods,
which are implemented to simply
call into ObjectContext. For exam-
ple, the implementation of TMts
AutoObject’s SetComplete method
simply checks FObject Context for
nil and then calls FObject Con-
text.SetComplete. Table 2 gives a
list of IObjectContext’s methods.

The Mtx unit contains the core
MTS support. It is the Pascal trans-
lation of the mtx.h header file, and
it contains the types (such as
IObjectControl and IObject
Context) and functions that make
up the MTS API.

Tic-Tac-Toe
Enough theory. Now it’s time to
write some code and see how all

this MTS stuff performs on the
open road. MTS ships with a
sample tic-tac-toe application
that’s a bit on the ugly side, so it
inspired me to implement the clas-
sic game from the ground up in
Delphi. To start, I use the MTS
Object Wizard to create a new
object called GameServer. Using the
Type Library Editor, I add to the
default interface for this object,
IGameServer, three methods,
NewGame, ComputerMove, and Player
Move. I also add two new enums,
SkillLevels and GameResults, that
are used by these methods. Figure

2 shows all of these items dis-
played in the Type Library Editor.

The logic behind the three meth-
ods of this interface is simple, and
they make up the requirements to
support a game of human versus
computer tic-tac-toe. NewGame
initializes a new game for the
client. ComputerMove analyzes the
available moves and makes a move
for the computer. PlayerMove
enables the client to let the com-
puter know how he or she has
chosen to move. You may recall
that last month I mentioned MTS
component development requires
a different frame of mind to devel-
opment of standard COM compo-
nents. This component offers a
nice illustratation.

If this were your average
run-of-the-mill COM component,
you might approach design of the

Activate Allows an object to perform context-specific initialization
when activated. This method will be called by MTS prior to
any custom methods on your MTS component.

Deactivate Enables you to perform context-specific cleanup when an
object is deactivated.

CanBePooled This method is currently unused, as MTS does not yet
support object pooling.

CreateInstance Creates an instance of another MTS object. You can
think of this method as performing the same task for
MTS objects as IClassFactory.CreateInstance does for
normal COM objects.

SetComplete Signals to MTS that the component has completed
whatever work it needs to do and no longer has any
internal state to maintain. If the component is
transactional, it also indicates that the current
transactions can be committed. After the method calling
this function returns, MTS may deactivate the object,
thereby freeing up resources for greater scalability.

SetAbort Similar to SetComplete, this method signals to MTS that
the component has completed work and no longer has
state information to maintain. However, calling this
method also means that the component is in an error or
indeterminate state and any pending transactions must
be aborted.

EnableCommit Indicates that the component is in a “committable”
state, such that transactions can be committed when the
component calls SetComplete. This is the default state of
a component.

DisableCommit Indicates that the component is in an inconsistent state,
and further method invocations are necessary before the
component will be prepared to commit transactions.

IsInTransaction Enables the component to determine whether or not it is
executing within the context of a transaction.

IsSecurityEnabled Allows a component to determine whether MTS security
is enabled. This method always returns True unless the
component is executing in the client’s process space.

IsCallerInRole Provides a means by which a component can determine
whether the user serving as the client for the component
is a member of a specific MTS role. This method is the
heart of MTS’s easy-to-use role-based security system. I’ll
speak more on roles later in this article.

➤ Table 2

➤ Table 1

60 The Delphi Magazine Issue 46

object by initializing some data
structure to maintain game state in
the NewGame method. That data
structure would probably be an
instance field of the object, which
the other methods would access
and manipulate throughout the life
of the object.

What’s the problem with this
approach for an MTS component?
One word: state. As you learned in
Part 1, the object must be stateless
to realize the full benefit of MTS.
However, a component architec-
ture that depends on instance data
to be maintained across method
calls is far from stateless. A better
design for MTS would be to return
a ‘handle’ identifying a game from
the NewGame method and using that
handle to maintain per-game data
structures in some type of shared
resource facility. This shared
resource facility would need to be
maintained outside the context of a
specific object instance, since MTS
may activate and deactivate object
instances with each method call.
Each of the other methods of the
component could accept this
handle as a parameter, enabling it
to retrieve game data from the
shared resource facility. This is a
stateless design because it doesn’t
require the object to remain acti-
vated between method calls, since
each method is a self-contained
operation that gets all the data it
needs from parameters and a
shared data facility.

This shared data facil-
ity I am speaking
abstractly about is
known as a resource dis-
penser in MTS. Spe-
cifically, the Shared
Property Manager is the
MTS resource dispenser
that is used to maintain
component-defined, process-wide
shared data. The Shared Property
Manager is represented by the
ISharedPropertyGroupManager inter-
face. The Shared Property Man-
ager is the top level of a hier-
archical storage system, maintain-
ing any number of shared property
groups, which are represented by
the ISharedPropertyGroup inter-
face. In turn, each shared property
group may contain any number of
shared properties, represented by
the ISharedProperty interface.
Shared properties are convenient
because they exist within MTS, out-
side the context of any specific
object instance, and access to
them is controlled by locks and
semaphores managed by the
Shared Property Manager.

With all that in mind, the imple-
mentation of the NewGame method is
shown in Listing 2.

This method first checks to
ensure the caller is in the proper

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;

begin
CheckCallerSecurity; // Use caller's role to validate security
SPG := GetSharedPropertyGroup; // Get shared property group for this object
// Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty('NextGameID', Exists);
if Exists then
GameID := SProp.Value

else
GameID := 0;

SProp.Value := GameID+1; // Increment and store NextGameID shared property
GameData := VarArrayCreate([1, 3, 1, 3], varByte); // Create game data array
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

role to invoke this method (more
on this in a moment). It then uses a
shared property to obtain an ID
number for the next game. Next,
this method creates a variant array
into which to store game data and
saves that data as a shared prop-
erty. Finally, this method calls
SetComplete so that MTS knows it’s
okay to deactivate this instance
after the method returns.

This leads me to the number one
rule of MTS development: call
SetComplete or SetAbort as often as
possible. Ideally, you will call
SetComplete or SetAbort in every
method so that MTS can reclaim
resources previously consumed
by your component instance after
the method returns. A corollary to
this rule is that object activation
and deactivation should not be
expensive, since that code is likely
to be called quite frequently.

The implementation of the
CheckCallerSecurity method illus-
trates how easy it is to take advan-
tage of role-based security in MTS,
see Listing 3.

This code begs the obvious
question, ‘how does one establish
the TTT role and determine what
users belong to that role?’ While
it’s possible to define roles pro-
grammatically, the most straight-
forward way to add and configure
roles is using the Windows NT
Transaction Server Explorer. After
the component is installed (you’ll
learn how to install the component
shortly), you can set up roles using
the Roles node found under each
package node in the Explorer. It’s
important to note that roles-based
security is supported only for
components running on Windows
NT. For components running on

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the "TTT" role to play the game.
if IsSecurityEnabled and not IsCallerInRole('TTT') then
raise Exception.Create('Only those in the TTT role can play tic-tac-toe');

end;

➤ Above: Listing 2 ➤ Below: Listing 3

➤ Figure 2: Tic-Tac-Toe
server in the Type
Library Editor.

June 1999 The Delphi Magazine 61

Windows 9x, IsCallerInRole will
always return True.

The ComputerMove and PlayerMove
methods are shown in Listing 4.

These methods are similar in
that they both obtain the game
data from the shared property
based on the GameID parameter,
manipulate the data to reflect the
current move, save the data away
again, and check to see if the game
is over. The ComputerMove method
also calls CalcComputerMove to ana-
lyze the game and make a move. If
you’re interested in seeing this and
the other logic of this MTS compo-
nent, the entire source code for the
ServMain unit is on the disk.

Installing the Server
Once the server has been written,
and you’re ready to install it into
MTS, Delphi makes your life easy.
Select Run | Install MTS Objects...
and you will invoke the Install MTS
Objects dialog. This dialog enables
you to install your object(s) into a
new or existing package.

Select the component(s) to be
installed, specify whether the
package is new or existing, click Ok,
and the component is installed.
Alternatively, you can also install
MTS components via the Transac-
tion Server Explorer application.
Note that this installation proce-
dure is markedly different than
that of standard COM objects,
which typically involves using the

RegSvr32 tool from the command
line to register a COM server.
Transaction Server Explorer also
makes it similarly easy to set up
MTS components on remote
machines, providing a welcome
alternative to the configuration
hell experienced by many trying to
configure DCOM connectivity.

The Client Application
Listing 5 shows the source code for
the client application for this MTS
component. Its purpose is to
essentially map the engine
provided by the MTS component
to a Tic-Tac-Toe-looking user
interface.

Figure 3 shows this application
in action: the human is X and the
computer is O.

Debugging MTS Applications
Since MTS components run within
MTS’s process space rather than
the client’s, you might think they
would be difficult to debug. How-
ever, MTS provides a side-door for

procedure TGameServer.ComputerMove(GameID: Integer;
SkillLevel: SkillLevels; out X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(
GameDataStr, [GameID]), Exists);

// Get game data array and lock for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// If game isn't over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then begin
CalcComputerMove(GameData, SkillLevel, X, Y);
SProp.Value := PropVal; // Save new game data array
GameRez := CalcGameStatus(GameData); // End of game?

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;
procedure TGameServer.PlayerMove(GameID, X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(
GameDataStr, [GameID]), Exists);

// Get game data array and lock for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// Make sure game isn't over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then begin
if GameData[X, Y] <> EmptySpot then
raise Exception.Create('Spot is occupied!');

// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

➤ Listing 4

➤ Figure 3

➤ Figure 4

62 The Delphi Magazine Issue 46

unit UiMain;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Buttons, ExtCtrls, Menus, TTTServer_TLB,
ComCtrls;

type
TRecord = record
Wins, Loses, Ties: Integer;

end;
TFrmMain = class(TForm)
SbTL: TSpeedButton;
SbTM: TSpeedButton;
SbTR: TSpeedButton;
SbMM: TSpeedButton;
SbBL: TSpeedButton;
SbBR: TSpeedButton;
SbMR: TSpeedButton;
SbBM: TSpeedButton;
SbML: TSpeedButton;
Bevel1: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
MainMenu1: TMainMenu;
FileItem: TMenuItem;
HelpItem: TMenuItem;
ExitItem: TMenuItem;
AboutItem: TMenuItem;
SkillItem: TMenuItem;
UnconItem: TMenuItem;
AwakeItem: TMenuItem;
NewGameItem: TMenuItem;
N1: TMenuItem;
StatusBar: TStatusBar;
procedure FormCreate(Sender: TObject);
procedure ExitItemClick(Sender: TObject);
procedure SkillItemClick(Sender: TObject);
procedure AboutItemClick(Sender: TObject);
procedure SBClick(Sender: TObject);
procedure NewGameItemClick(Sender: TObject);

private
FXImage: TBitmap;
FOImage: TBitmap;
FCurrentSkill: Integer;
FGameID: Integer;
FGameServer: IGameServer;
FRec: TRecord;
procedure TagToCoord(ATag: Integer; var Coords: TPoint);
function CoordToCtl(const Coords: TPoint): TSpeedButton;
procedure DoGameResult(GameRez: GameResults);

end;
var FrmMain: TFrmMain;
implementation
uses
UiAbout;

{$R *.DFM}
{$R xo.res}
const
RecStr = 'Wins: %d, Loses: %d, Ties: %d';

procedure TFrmMain.FormCreate(Sender: TObject);
begin
// load "X" and "O" images from resource into TBitmaps
FXImage := TBitmap.Create;
FXImage.LoadFromResourceName(MainInstance, 'x_img');
FOImage := TBitmap.Create;
FOImage.LoadFromResourceName(MainInstance, 'o_img');
FCurrentSkill := slAwake; // set default skill
with FRec do // init record UI
StatusBar.SimpleText :=
Format(RecStr, [Wins, Loses, Ties]);

// Get server instance
FGameServer := CoGameServer.Create;
FGameServer.NewGame(FGameID); // Start a new game

end;
procedure TFrmMain.ExitItemClick(Sender: TObject);
begin
Close;

end;
procedure TFrmMain.SkillItemClick(Sender: TObject);
begin
with Sender as TMenuItem do begin
Checked := True;
FCurrentSkill := Tag;

end;
end;
procedure TFrmMain.AboutItemClick(Sender: TObject);
begin
// Show About box
with TFrmAbout.Create(Application) do
try
ShowModal;

finally
Free;

end;
end;

procedure TFrmMain.TagToCoord(
ATag: Integer; var Coords: TPoint);

begin
case ATag of
0: Coords := Point(1, 1);
1: Coords := Point(1, 2);
2: Coords := Point(1, 3);
3: Coords := Point(2, 1);
4: Coords := Point(2, 2);
5: Coords := Point(2, 3);
6: Coords := Point(3, 1);
7: Coords := Point(3, 2);

else
Coords := Point(3, 3);

end;
end;
function TFrmMain.CoordToCtl(const Coords: TPoint):
TSpeedButton;

begin
Result := nil;
with Coords do
case X of
1:
case Y of
1: Result := SbTL;
2: Result := SbTM;
3: Result := SbTR;

end;
2:
case Y of
1: Result := SbML;
2: Result := SbMM;
3: Result := SbMR;

end;
3:
case Y of
1: Result := SbBL;
2: Result := SbBM;
3: Result := SbBR;

end;
end;

end;
procedure TFrmMain.SBClick(Sender: TObject);
var
Coords: TPoint;
GameRez: GameResults;
SB: TSpeedButton;

begin
if Sender is TSpeedButton then begin
SB := TSpeedButton(Sender);
if SB.Glyph.Empty then begin
with SB do begin
TagToCoord(Tag, Coords);
FGameServer.PlayerMove(FGameID, Coords.X, Coords.Y,
GameRez); Glyph.Assign(FXImage);

end;
if GameRez = grInProgress then begin
FGameServer.ComputerMove(FGameID, FCurrentSkill,
Coords.X, Coords.Y, GameRez);

CoordToCtl(Coords).Glyph.Assign(FOImage);
end;
DoGameResult(GameRez);

end;
end;

end;
procedure TFrmMain.NewGameItemClick(Sender: TObject);
var
I: Integer;

begin
FGameServer.NewGame(FGameID);
for I := 0 to ControlCount - 1 do
if Controls[I] is TSpeedButton then
TSpeedButton(Controls[I]).Glyph := nil;

end;
procedure TFrmMain.DoGameResult(GameRez: GameResults);
const
EndMsg: array[grTie..grComputerWin] of string =
('Tie game', 'You win', 'Computer wins');

begin
if GameRez <> grInProgress then begin
case GameRez of
grComputerWin : Inc(FRec.Loses);
grPlayerWin : Inc(FRec.Wins);
grTie : Inc(FRec.Ties);

end;
with FRec do
StatusBar.SimpleText :=
Format(RecStr, [Wins, Loses, Ties]);

if MessageDlg(Format('%s! Play again?',
[EndMsg[GameRez]]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
NewGameItemClick(nil);

end;
end;
end.

➤ Listing 5: UiMain.pas, the main unit for the client application.

June 1999 The Delphi Magazine 63

debugging purposes that makes it
a snap. Just load the server pro-
ject, and use the Run Parameters
dialog to specify mtx.exe as the
host application. As a parameter to
mtx.exe, you must pass /p:{pack-
age guid}, where package guid is the
GUID of the package as shown in
the Transaction Server Explorer.
This dialog is shown in Figure 4.
Next, set your desired breakpoints
and run the application. You won’t
see anything happen initially since
the client application is not yet
running. Now you can run the
client from Windows Explorer or a
command prompt, and you will be
off and debugging.

Summary
By now, you should be familiar
with Delphi 4’s support for MTS
and how to create MTS applica-
tions in Delphi. What’s more,
you’ve hopefully caught a few tips
and tricks along the way for devel-
oping optimized and well-behaved
MTS components. MTS packs a
wallop out of the box by providing
services such as lifetime manage-
ment, transaction support, secu-
rity, all in a familiar framework.
MTS and Delphi combine to pro-
vide you with a great way to lever-
age your COM experience into
creating scalable multi-tier appli-
cations. Just don’t forget those dif-

ferences are design nuances
between normal COM components
and MTS components!

Steve Teixeira is Vice President of
Software Development at DeVries
Data Systems, a consulting and
training firm. Send your COM
questions and comments to
steve@ dvdata.com. Steve wishes
to thank Lino ‘MTS’ Tadros for his
assistance with this article.

	MTS Wizards
	MTS Framework
	Tic-Tac-Toe
	Installing the Server
	The Client Application
	Debugging MTS Applications
	Summary

